Leaderboard
Popular Content
Showing content with the highest reputation on 12/20/14 in all areas
-
Expansion Joint In Seismic Zone 3 Building
Waqas Haider and one other reacted to EngrUzair for a topic
W. Assalam. In principle, in order to avoid pounding effect (collision of the two buildings during an earth quake), you will need to provide an expansion joint that would be a larger than the maximum drift of both the buildings, at the expansion joint location. I have read somewhere (and If I remember correctly), width of such an expansion joint is LESS than the sum of the maximum drifts of the two buildings. I will have to search for the reference, however, to give you exact relation. You may also go through this post http://www.sepakistan.com/topic/1411-expansion-joint/, containing a good discussion as well a couple of nice references on expansion joints.2 points -
Building Drift in ETABS Drift is a very complex topic in structural engineering. It involves too many factors to arrive at a suitable decision. It involves engineering judgment, the phenomenon fresh engineers might not feel. In this article, I have tried to explain what is building drift, allowable limits, ways and means to check in ETABS models and to control the excessive drift. Please keep in mind, this article is not about the building drift as far as structural science is concerned, rather this topic of drift is related to ETABS software. First of all you must be familiar with the term story drift. For convenience, I am quoting here the definitions from UBC-97 code:- STORY DRIFT is the lateral displacement of one level relative to the level above or below. STORY DRIFT RATIO is the story drift divided by the story height. 1) Maximum Limits Now what for story drift limits? What is the maximum permissible value? Well it depends upon the type of drift. Is it seismic or wind? For seismic, I will refer to UBC-97 code which in section 1630.10.2 talks about drift limits for earthquake. Now in simple words, the maximum limit for seismic drift is:- delta M shall not exceed 0.025 x story ht (if building seismic period is less than 0.7) delta M shall not exceed 0.020 x story ht (if building seismic period is equal or greater than 0.7) Important to note here is that it talks about SEISMIC drift so SEISMIC building period not the WIND period. Now delta M = Max inelastic response displacement = 0.7R delta S where R = from Table 16-N delta S = displacement from static, elastic analysis this value is read from ETABS. you multiply this value by 0.7R to get delta M This was all about seismic drift, but for wind drift code is mute. I will refer you to ASCE 2005 commentary CC.1.2 So we can understand that the limit for wind drift is "on the order of l/600 to l/400" for "common usage". This is common thing, however, in reality this figure can be up or down depending upon the ductility of cladding material and finishes. However for common usage value of l/400 is thought to be well satisfactory. Here l means story ht. The concept of drift limits is same throughout all the governing codes, and the typical limits of story height by some number is same, but obviously you have to take care of the process of calculating the wind force or seismic forces. You should not calculate wind force from one code and apply limits of another code. 2) Load Combinations Once the drift limit has been determined separately for seismic and wind forces, now is the need to check the actual drift vs the limit. Determination of actual drift depends on the load combination and the period of recurrence. If not properly calculated, this may dramatically increase or decrease the accepted drift values in model. Seismic force E is always already factored so that's the reason its factor is always 1.0 in load combinations of ACI/ASCE code. The recurrence period for seismic force is 50 years. In seismic drift we do not convert it into service seismic force. Seismic drift is checked against the direct load case of EQx, EQy etc in ETABS. For wind drift, we need to convert 50 year wind to service wind force. It has been recommended by ASCE commentary CC.1.2 To convert 50 year service wind force to 10 year service wind force it is multiplied by 0.7, as the equation says, and other gravity loads; D and 0.5L are also added. So in a nutshell we create following load combinations in ETABS to check our drift:- DRIFTWx1 = D+0.5L+0.7Wx DRIFTWx2 = D+0.5L-0.7Wx DRIFTWy1 = D+0.5L+0.7Wy DRIFTWy2 = D+0.5L-0.7Wy For seismic drift, as discussed earlier, we do not need any combination, drift will be checked just on EQx and EQy load cases only. 3) How to check in ETABS Now we have obtained both the actual drift and the drift limit, but how can we do this in ETABS easily? Well, after creating the drift combinations as discussed in step 2, we need to do as below:- For seismic drift goto File>Print Tables>Summary Report Select the file name Scroll down to the end of the page, you will find out a section about drifts, similar to this one:- It displays the max drift for each lateral load case for each story. As we want the drift for wind to be on drift load combinations and not on wind load cases, so we will not compare this wind drift without limits. In this table we are going to check just the drift values of our ETABS model for individual seismic load cases; EQx and EQy. As you noticed, this table shows us values in fraction format. For example 1/105 that becomes 0.009523809524. This 1/105 value is story drift divided by story ht. It means delta S / story ht. Now this value is delta S. First we need to convert it to delta M by multiplying it with 0.7R. Assume R here is 3.5 so delta M = 0.7 x 3.5 x 1/105 = 7/300 = 0.023333 which is less than 0.025 so safe ( if T<0.7). So instead of calculating every time by 0.7R we can check these limits in other way. If our limit is 0.025 then the limit we get is 0.025/R/0.7. Assume R=3.5. Now the values in ETABS are inverse so our limit is 0.7x3.5/0.025 = 98. In ETABS the drift is reported as 1/x where x is some number. Now as long as x (some number) is greater than 98 our limit of 0.025 x story ht is being satisfied. This way you can quickly check and compare seismic drifts. Now for the wind drifts, goto Display>Show tables, select Point displacements>Story drifts and then select only drift combinations for results. Click on and then copy the table to EXCEL. To save time you can right click on EXCEL taskbar and select maximum and minimum. Then just select the column H or I and see the maximum value that should be less than H/400 to H600 limit (0.0025 t0 0.00167). Again the values reported in ETABS are divided by story ht. http://4.bp.blogspot.com/-9qv8XKHgL8Q/UALNKflmVsI/AAAAAAAAAEQ/AwKBYWt2iys/s320/image022-773193.jpg 4) Controlling Excessive Drift Values sometimes you may face problem of excessively large values in drift tables in ETABS. Well we are not going to talk about different measures and modeling techniques to control the drift values. We are going to talk about large numbers in drift tables. Sometimes it happens that a point or node is free in the model or is connected to a NULL line or very flexible section. Drift tables for example the story drift table in wind captures the maximum displaced points. Obviously the displacement of several meters in tables is not what we are looking for. Drift values (relative) may be still okay for these points, but it requires you to check the displacement values too before checking directly the drift. Unlock the model and remove all free points, check for any discontinuity and modify your models to remove all the errors.1 point
-
Dear Engr. Waqas, I dont think 2" expansion joint will be sufficient for a building in seismic zone 3. But other things do matter as well for example; how many stories? etc In ASCE/UBC/Australian codes, seismic separation should be SRSS of inelastic displacements. that is delta = [ (inelastic detla of building 1)² + (inleastic delta of building 2)² ] ^ 0.5 Remember that these delta values should be at the same level. For example if a building is 9 story high and adjacent building 3 story high. You have to calculate expansion joint at level 3 of both buildings. Ofcourse you need to check expansion joints at all other stories too (Level 2, Level 1 and basements) if displacement on those levels is more than level 3 (due to high seismic weights or anything). Please also remember that usually in softwares you consider X or -X directions for seismic analysis (and Y / -Y) take the max from X and -X and multiply it with Cd/I (for ASCE) or 0.7R (for UBC) to calculate seismic movement of that building. Do this for the second building and then SRSS will give you final value. HTH1 point
-
Expansion Joint In Seismic Zone 3 Building
Waqas Haider reacted to UmarMakhzumi for a topic
Please also read: http://www.sepakistan.com/topic/109-building-drifts-in-etabs/ http://www.sepakistan.com/topic/1341-ubc-seismic-drift-limits/ Uzair is right. I don't remember exactly but I believe the minimum distance between buildings should be equal to square root of sum of squares of max inelastic displacements of individual buildings. Its is UBC 97. You can find it easily. Thanks.1 point -
Building Drifts In Etabs
JL07 reacted to UmarMakhzumi for a topic
Good article; I will throw my two cents. Seismic drift values are much larger than wind values. UBC uses maximum inelastic response displacements rather than the design level displacements to verify the performance of the building. As stated above, the seismic drift limits are 2% & 2.5% of the story height for long and short -period buildings. So, for a floor to floor height of 12 feet the max. allowable inelastic drift value would be 2% of 12 feet= 0.02*12*12inches=2.88 inches. For wind for a 12 story height, drift would be L/400=12*12/400 =0.36 inches, A comparison of both wind and seismic drift limits shows that earthquake inelastic displacements are quiet large compared to wind displacements. That is why proper detailing is emphasied in seismic design. Moreover, when calculating ΔS for seismic, make sure: you have included accidental torsion in your analysis. use strength design load combinations: 1.2D + 1.0E + 0.5L & 0.9D + 1.0E You are using cracked section properties for reinforced concrete buildings. Typical values are Icr walls= 0.5EcIg, Beams = 0.5EcI g & for Columns 0.5 - 0.7 EcIg.1 point
This leaderboard is set to Edmonton/GMT-06:00