Jump to content
  • Welcome to SEFP!

    Welcome!

    Welcome to our community forums, full of great discussions about Structural Engineering. Please register to become a part of our thriving group or login if you are already registered.

Lift Shaft Design (Composite Structure)


Yasir Saleem
 Share

Recommended Posts

Hello Everyone,

 

I am wandering if somebody guide me through the design of lift shaft for composite Structure. By composite i mean two existing walls are RCC one will be back wall and one side wall. Other two will be steel walls and opening is in steel wall. I have asked for the structural details of the existing RCC walls to check there steel and if they are designed as shear walls or not. I have to add the steel walls to make a shaft. I want help if i have to check the steel walls what should be my approach as it is not high rise its just a two storey building and lift will be GF plus FF only. the loading i have to consider is hoist load on the top of the walls which more or less behave like point load and i have to chk this for dynamic loading for vibrations that can cause or not later about the lateral loading. I think the connections will be simple as there will be no such great moments so i assume them pin connections. Loading for the diaphragm beam should be the slab load if there any and lateral loading. Bracing for the wall for lateral load.

What about connections between RCC and steel should i keep them also pin or fixed with moments because what i am thinking that if the hoist is placed on RCC and steel wall then it will create the moments at the connection. So it has to be fixed. but then in that case the RCC wall should be able to resist the loading applied at that point.

 

Please go through these points and suggest me what should i do. And yes if some one have any kind of design data or calculation example for lift shafts that will be great help.

 

Regards.     . 

Link to comment
Share on other sites

Hello Everyone,

 

I am wandering if somebody guide me through the design of lift shaft for composite Structure. By composite i mean two existing walls are RCC one will be back wall and one side wall. Other two will be steel walls and opening is in steel wall. I have asked for the structural details of the existing RCC walls to check there steel and if they are designed as shear walls or not. I have to add the steel walls to make a shaft. I want help if i have to check the steel walls what should be my approach as it is not high rise its just a two storey building and lift will be GF plus FF only. the loading i have to consider is hoist load on the top of the walls which more or less behave like point load and i have to chk this for dynamic loading for vibrations that can cause or not later about the lateral loading. I think the connections will be simple as there will be no such great moments so i assume them pin connections. Loading for the diaphragm beam should be the slab load if there any and lateral loading. Bracing for the wall for lateral load.

What about connections between RCC and steel should i keep them also pin or fixed with moments because what i am thinking that if the hoist is placed on RCC and steel wall then it will create the moments at the connection. So it has to be fixed. but then in that case the RCC wall should be able to resist the loading applied at that point.

 

Please go through these points and suggest me what should i do. And yes if some one have any kind of design data or calculation example for lift shafts that will be great help.

 

Regards.     . 

You should share your floor plans to give an idea of what you are trying to do. It will help others look for solution other than what are proposing.

Link to comment
Share on other sites

Hello Everyone,

 

I am wandering if somebody guide me through the design of lift shaft for composite Structure. By composite i mean two existing walls are RCC one will be back wall and one side wall. Other two will be steel walls and opening is in steel wall. I have asked for the structural details of the existing RCC walls to check there steel and if they are designed as shear walls or not. I have to add the steel walls to make a shaft. I want help if i have to check the steel walls what should be my approach as it is not high rise its just a two storey building and lift will be GF plus FF only. the loading i have to consider is hoist load on the top of the walls which more or less behave like point load and i have to chk this for dynamic loading for vibrations that can cause or not later about the lateral loading. I think the connections will be simple as there will be no such great moments so i assume them pin connections. Loading for the diaphragm beam should be the slab load if there any and lateral loading. Bracing for the wall for lateral load.

What about connections between RCC and steel should i keep them also pin or fixed with moments because what i am thinking that if the hoist is placed on RCC and steel wall then it will create the moments at the connection. So it has to be fixed. but then in that case the RCC wall should be able to resist the loading applied at that point.

 

Please go through these points and suggest me what should i do. And yes if some one have any kind of design data or calculation example for lift shafts that will be great help.

 

Regards.     . 

 

Yasir, from the above quoted description, I assume that the present wall is a L- Shaped Wall.  A reasonable solution for a G + 1 or 2 floor building would be to provide a concrete column at the opposite corner to the L-Shaped wall and connect it with exisiting concrete walls through beams. For G + 1 or 2 floor building that would be sufficient. Similar option should follow for steel.  Assuming your present wall configuration is adequate for lateral loads, I see no point in providing steel walls. Depending of the weight of lift and what fdn layout you have, you should be fine with the single column option with beams connectng or bracing into the exisiting wall for concrete/ steel.

Link to comment
Share on other sites

Sorry for being late in reply, I am attaching the drawing which i got from the contractor till now. I hope they will give me something in good shape soon but at the moment to have an idea this is it. Sir umer my first suggestion was to provide the concrete column and beam but they say no to it. In this drawing you can see i have proposed some elements. I hope they will be more or less working. I will use bracing if i need from calculations. But i just want to confirm the checks which we apply to make sure that in any case of vibration of dynamic loading it is safe. So that is why i am looking for some example.

Scanned copy.pdf

Link to comment
Share on other sites

Sorry for being late in reply, I am attaching the drawing which i got from the contractor till now. I hope they will give me something in good shape soon but at the moment to have an idea this is it. Sir umer my first suggestion was to provide the concrete column and beam but they say no to it. In this drawing you can see i have proposed some elements. I hope they will be more or less working. I will use bracing if i need from calculations. But i just want to confirm the checks which we apply to make sure that in any case of vibration of dynamic loading it is safe. So that is why i am looking for some example.

 

You can consider the impact factor and augment your forces for the case of the start and stopping of lift.  There would be no significant continuous dynamic forces. I dont have any calculation examples that cover this.  If anyone else has that please post.

 

Your supporting members are super stiff axially. I am having a hard time accepting that the operation of the lift would produce any significant dynamic effects in the subject case for reasons explained above. I have designed lift cores considering impact but not any dynamic effects. If you get any examples, do share here too.

 

Thanks.

Link to comment
Share on other sites

sir g thanks for guidance, Actually i am not sure for the dynamic loading but that was my question that if there is some force how we take it and what factor should be there but if there is no need for such loading i am ok with it, but that was my query i was just wandering... But ok i will do it accordingly as one of my course mate from Brasil also explained the same you are telling me so no big issues let me go with that.

Link to comment
Share on other sites

sir g thanks for guidance, Actually i am not sure for the dynamic loading but that was my question that if there is some force how we take it and what factor should be there but if there is no need for such loading i am ok with it, but that was my query i was just wandering... But ok i will do it accordingly as one of my course mate from Brasil also explained the same you are telling me so no big issues let me go with that.

 

Okay, Super.

 

Thanks.

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
 Share

  • Recently Browsing   0 members

    • No registered users viewing this page.
  • Our picks

    • Hi there,
      I am interested in performing "Performance Based Design" for a 20 story building. 
      I'll be performing "Non-Linear Static Pushover Analysis" for my model. Until now, I have decided to go with "Displacement Co-efficient method". I will be using ETABS 2017 for performing Pushover Analysis. While assigning plastic hinges, I have an option of using ASCE 41-17 (Seismic Evaluation and Retrofit of Existing buildings". I would like to know what would be a better estimate for relative distances for plastic hinges in case of beams, columns. Any input concerning assignment of hinges to beams, columns and shear walls is highly appreciated. Normally it's taken 0.05 and 0.95 or 0.1 and 0.9. What's your opinion on this?
      Secondly, it would be great if someone can recommend me a book or some good source to understand how to characterize building using performance levels. Any sort of help is appreciated.
      I have recently graduated and joined a structural design firm, so kindly guide me, considering me a beginner.

       
      • 2 replies
    • *SEFP Consistent Design*<br style="background-color:#ffffff; color:#272a34; font-size:14px; text-align:start">*Pile Design*<br style="background-color:#ffffff; color:#272a34; font-size:14px; text-align:start">*Doc No: 10-00-CD-0007*<br style="background-color:#ffffff; color:#272a34; font-size:14px; text-align:start">*Date: April 16, 2018*

      1.1. FUNCTION OF JOINT

      Beam-column joint must transfer the forces, such as moment, shear and torsion, transferred by the beam to the column so that the structure can maintain its integrity to carry loads for which it is designed.

      Another function of the beam-column joint is to help the structure to dissipate seismic forces so that it can behave in a ductile manner.

      1.2.WHY DO WE CARE

      During an extreme seismic event, the code-based structure is expected to maintain its load-carrying capacity for gravity loads even after the structure deforms into inelastic range so that it does not pose any life safety hazard. Hence, the joint can go through significant degradation of strength and stiffness, and if it fails in shear, or anchorage, the life-safety objective of code cannot be achieved.

      1.3.CONSEQUENCES OF FAILURE


      1.4.THINGS TO CONSIDER FOR BEAM COLUMN JOINT

      Longitudinal bars of beams, or slab, must be able to develop their yield stress, so that the beam/slab can transfer moment to joint. It means that longitudinal bars must have adequate development length for hooked bars. This implies that the size of the column must be such that bars can develop their tensile forces. If bars can transfer moment, they can also transfer shear as far as monolithic construction is concerned.


      The shear strength of the joint must enable the transfer of moment and shear through it.



      The joint should be Constructible: Congestion of reinforcement is the main concern.

      1.5.DESIGN SHEAR FOR BEAM COLUMN JOINT

      The design shear for beam-column joint depends upon the relative strength of beam and column at the joint.

       
      • 4 replies
    • *Comments/Observations regarding modelling in ETABS*

      *Doc No: 10-00-CD-0006*

      *Date: May 06, 2017*

      Some of the observations made during extraction of results from ETABS (v 9.7.4), for design of reinforced concrete members, are being share in this article.,

      1) Minimum Eccentricity

      ETABS always considers the minimum eccentricity for selecting the design moment of columns irrespective of the probable behavior of the column, whether short or long column. See section 10.10.6.5 and its commentary of ACI 318-08 which deals with minimum eccentricity of long columns. You should always check the design moments that ETABS uses for columns if you want to bring down the cost of construction.

      2) Unbraced/ Braced Preference

      ETABS always performs analysis of frame as if it is un-braced. You should investigate if the storey under consideration is braced, or un-braced (10.10.5.2), and decide appropriate design moments of columns.

      3) Time Period

      ETABS has a tendency to select a time period of the building that is considerably less than the value obtained by the approximate method, Method A, of the section 1630.2.2  of UBC 97. To quote the FEMA 451 document: ''Because this formula is based on lower bound regression analysis of measured building response in California, it will generally result in periods that are lower (hence, more conservative for use in predicting base shear) than those computed from a more rigorous mathematical model". So, there is no need to use the value of time period that is lot less than Ta. One should always check the time period used by the software; ETABS can overestimate the seismic force by more than 2 times.

      Visit the forum link to read the complete article.
      Link: http://www.sepakistan.com/topic/2300-commentsobservations-regarding-modelling-in-etabs/
      • 0 replies
    • The minimum amount and spacing of reinforcement to be used in structural floors, roof slabs, and walls for control of temperature and shrinkage cracking is given in ACI 318 or in ACI 350R. The minimum-reinforcement percentage, which is between 0.18 and 0.20%, does not normally control cracks to within generally acceptable design limits. To control cracks to a more acceptable level, the percentage requirement needs to exceed about 0.60% (REFRENCE ACI COMMITE REPORT 224R-01)



       

       



       

       

      So according to above statement , should we follow 0.60%, to be on more safe side??



       
      • 12 replies
    • Dear Sir/Madam,

      This email is an invitation for the participation in the First South Asia Conference on Earthquake Engineering (SACEE-2019) which will be held on 21-22 February 2019 in Karachi, Pakistan. This conference is the inaugural event in this series of conferences which has been constituted under the auspices of South Asia Earthquake Network (SHAKE). The organisers of the conference include NED University, University of Porto, University of Fuzhou, University Roma Tre and Institution of Engineers Pakistan. The conference website can be visited at http://sacee.neduet.edu.pk/.

      Please note that world leading earthquake engineering experts have confirmed their participation in the conference. These include Prof Abdelkrim Aoudia (Italy), Prof Alper Ilki (Turkey), Dr Amod Mani Dixit (Nepal), Prof Bruno Briseghella (Italy), Prof George Mylonakis (UK), Prof Khalid Mosalam (USA), Prof Humberto Varum (Portugal) and many others. The presence of these distinguished experts allows you to exchange your work/issues with them and discuss possibility of any future collaboration. Please note that participation in the conference is strictly based on registration. Early registration in different categories at reduced rates are available till 10 December 2018. Please visit the conference website to see the details and the link for registration.

      If there are any queries, please do not hesitate to contact the Conference Secretary at the following address

      Prof. Muhammad Masood Rafi
      Conference Secretary- SACEE-2019
      Chairman
      Department of Earthquake Engineering
      NED University of Engineering & Technology Karachi, Pakistan.
      Phone: 0092-21-992-261261 Ext:2605
      Email: rafi-m@neduet.edu.pk
    • What is the Minimum reinforcement For Precast Pile  according to different codes (ACI,BS)??  Pile length is 40 times of pile least dimension . 
      • 1 reply
    • Dear members, I am working on a 10 storied rcc factory building with one basement,  where floor loads are in general 125 psf(Live) . but there are 2 warehouse in the building at ground floor & 10th floor where the Live load of stacked materials are 450psf. I have modeled it and analysed in ETABS. After analysis, seeing the floor displacement for seismic load,  i am in big shock to see the pattern. the displacement pattern suddenly increased hugely & then got normal . if the warehouse load created problem, then why it effected only Ground floor level, not the 10th floor! Please tell me how can i solve it. 
      • 1 reply
    • Asalamualaikum all,

      I have columns which are conflicting with the underground water tank as shown in figure.
       

      So I have decided to make underground water tank base slab as a footing for column. So I import etabs model to safe and just take uniform water load on base slab and point load from columns.

      This is the residential house. The BC is 2tsf. But SAFE is showing tension on the base slab and the thickness from punching is 30''. I believe that thickness is too high. What can be the error? Is this approach is correct for design base slab of ugwt to carry load of two edge columns?
      • 11 replies
    • SAFE perform iterative uplift analysis,any one having experience how to check the results of this analysis???what is the purpose and scope of this analysis???
      • 15 replies
    • Shear wall design
      AOA 

      i am facing problems in shear wall design .what are the pier and spandral ?what will be the difference when we assign pier or spandral? without assigning these the shear wall design is incomplete .

      i am taking about etabsv16

      someone have document about shear wall design plz provide it 

      thank you

       
      • 13 replies
  • Tell a friend

    Love Structural Engineering Forum Of Pakistan? Tell a friend!
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use and Guidelines.