Jump to content
  • Welcome to SEFP!

    Welcome!

    Welcome to our community forums, full of great discussions about Structural Engineering. Please register to become a part of our thriving group or login if you are already registered.

Diaphragm Design


Muneeb Badar
 Share

Recommended Posts

Dear All,

Just a brief introduction about the Diaphragm Design for Lateral Forces in case of Major Earthquake Areas:

Please correct me where I am wrong:

There are two types of forces in a member

1- Out of Plane Forces (out of plane behavior)

2- Inplane Forces (inplane behavior)

Followings are the major components for design purpose in any structure

a- Foundation

b- Shear wall

c- Column

d- Beam

e- Slab

Foundation : We design it mostly for out of plane forces

Shear wall : We design it for purely inplane forces because we neglect its out of plane stiffness

Slab : We design it for out of plane as well as for inplane bending.

Slab:

Out of Plane

In slabs, we normally provide the flexural reinforcement and check the thickness of slab which is out of plane behavior. This design should be conducted on gravity load basis even the building is located in severe earthquake areas. In case of Slab supported on beams we need to design for out of plane forces based on gravity loading. In case of Flat Slab we also need to design it on gravity loading but we just need to satisfy one requirement of ACI code 21.13.6 (b ). Actually code asks this condition to be satisfied due to the rotation limit of slab due to punching at these joints. One option is to satisfy this requirement (ACI 21.13.6 (b ) or second option is we can check the actual D/C ratio of these junctions by using PEER/ATC 72 guidelines. PEER/ATC 72 guideline is attached here. Both are equally reliable just the later is a guideline not a codal provision.

Inplane

The second design for a slab which is MUST in severe earthquake areas and normally nobody perform is inplane design. As we know, earthquake acts on a structure laterally, and diaphragm is used to transfer lateral forces to vertical members. We need to assign the proper diaphragm to the slab. Proper means the diaphragm which can distribute the forces to vertical members as well as it transfer the forces through slab. So we have two options. a- Rigid Diaphragm and b- Semi Rigid Diaphragm. So we ll assign semi rigid diaphragm. There is one question why, we ll put this question to some other topic.

So when we assign semi rigid diaphragm it will transfer the forces through slab member and in ETABS we can see the forces in the slab.

Followings are the reinforcements which we need to design for inplane forces

1- Shear Reinforcement at basement Slab Level and Ground Floor Slab Level.

2- Shear Reinforcement at Podium Levels

3- Tension Reinforcement

4- Chord Reinforcement

5- Shear Friction Reinforcement

All of these reinforcements are used to guide the inplane forces from retaining wall to shear wall at basement levels and from shearwall to slab at upper levels. for example tension or collector reinforcement collects axial inplane force and transfer to shearwall. Slab shear reinforcement is used to avoid lateral cracking of slab in case of earthquake.

So we must design the slab for these two forces and both have different design practices.

The attached NEHRP file is very use full guideline to understand diaphragm design.

In ETABS, we can check the inplane forces from F11, F12 and F22 and then making the section cuts from slab. From these section cuts we can obtain shear forces and axial force and flexural force.

In addition to slabs, we need to check the retaining wall shear reinforcement (distribution reinforcement) and flexural reinforcement (vertical reinforcement) for these inplane forces. We also need to provide the reinforcement at the junction of basement slab and retaining wall in the form of U bars. This is also based on inplane forces

Thanks

Muneeb

PEER-ATC-72.pdf

NEHRP Guideline for Diaphragm Design.pdf

Link to comment
Share on other sites

Very well written Muneeb! Nice effort! Lot of new things for me :P

 

Dear Waseem,

 

This is the minimum brief which I can write, otherwise if you start elaborating this you could end up with 20 or 30 pages. :)

 

Anyways thanks for your appreciation...... :)

Link to comment
Share on other sites

Its a nice short basic level summary. I was actually looking for someone who could contribute an article about Design of Cord and Collector elements and other topics- you can check the list athttp://www.sepakistan.com/topic/1329-sefp-consistent-design/#entry4430

Let me know if you are interested. I can help you with any article if you plan to write for SEFP.

Thanks.

Link to comment
Share on other sites

Dear Umar,

 

What do you mean by Chord and Collector Elements. Is it from diaphragm design. If so then why only chord because in diaphragm, there are many other type of reinforcements.

 

Anyways I am interested in anything in which I can contribute.

 

Thanks

 

Muneeb

Link to comment
Share on other sites

Muneeb,

These elements are part of diaphargm design.. Collectors are drag stuts (not always required). Anyway, if you have any topic up your sleeve, we can write about it. If not then lets detail an article about diaphragm design.. Send me an inbox about whatever suits you..

Thanks.

Link to comment
Share on other sites

Dear Umar

 

Thanks, I can write on collectors or any detail related to dynamic static, linear or non linear...........its no problem. But to which level you want me to me to write on collectors.............boring the bookish type or the practical the design type. :) ..?

 

For book type, there are many literature available which we can write while the design type we can do it by ETABS.

 

Thanks

 

Muneeb

Link to comment
Share on other sites

Muneeb,

 

IMHO, your write-up would be very helpful for us all, if you could include following items in it:

 

a. General concept and brief theoretical background (should be be very brief, and limited to practical aspects only)

 

b. Reference to applicable design code & code clause

 

c. A comprehensive example, elaborating step-by-step calculation procedure for the analysis and design of structural element being discussed manually.

 

d. If possible, procedure of  carrying out the example referred in para 'c ' above, using one of commonly used structural software (e.g., ETABS, SAP2000 etc.)

 

Regards.

Link to comment
Share on other sites

Dear Engr Uzair,

 

You gave me alot of work man..... :) .....I am not too good to write such kind of details. But I ll try my best to do good.

 

Dear Umar,

 

I ll send you the article before posting and you can modify and proof reading as I am not good in writing....... :) .....Secondly, this will only be for Chord Reinforcement of diaphragm design?

 

Thanks

 

Muneeb

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
 Share

  • Recently Browsing   0 members

    • No registered users viewing this page.
  • Our picks

    • Hi there,
      I am interested in performing "Performance Based Design" for a 20 story building. 
      I'll be performing "Non-Linear Static Pushover Analysis" for my model. Until now, I have decided to go with "Displacement Co-efficient method". I will be using ETABS 2017 for performing Pushover Analysis. While assigning plastic hinges, I have an option of using ASCE 41-17 (Seismic Evaluation and Retrofit of Existing buildings". I would like to know what would be a better estimate for relative distances for plastic hinges in case of beams, columns. Any input concerning assignment of hinges to beams, columns and shear walls is highly appreciated. Normally it's taken 0.05 and 0.95 or 0.1 and 0.9. What's your opinion on this?
      Secondly, it would be great if someone can recommend me a book or some good source to understand how to characterize building using performance levels. Any sort of help is appreciated.
      I have recently graduated and joined a structural design firm, so kindly guide me, considering me a beginner.

       
      • 2 replies
    • *SEFP Consistent Design*<br style="background-color:#ffffff; color:#272a34; font-size:14px; text-align:start">*Pile Design*<br style="background-color:#ffffff; color:#272a34; font-size:14px; text-align:start">*Doc No: 10-00-CD-0007*<br style="background-color:#ffffff; color:#272a34; font-size:14px; text-align:start">*Date: April 16, 2018*

      1.1. FUNCTION OF JOINT

      Beam-column joint must transfer the forces, such as moment, shear and torsion, transferred by the beam to the column so that the structure can maintain its integrity to carry loads for which it is designed.

      Another function of the beam-column joint is to help the structure to dissipate seismic forces so that it can behave in a ductile manner.

      1.2.WHY DO WE CARE

      During an extreme seismic event, the code-based structure is expected to maintain its load-carrying capacity for gravity loads even after the structure deforms into inelastic range so that it does not pose any life safety hazard. Hence, the joint can go through significant degradation of strength and stiffness, and if it fails in shear, or anchorage, the life-safety objective of code cannot be achieved.

      1.3.CONSEQUENCES OF FAILURE


      1.4.THINGS TO CONSIDER FOR BEAM COLUMN JOINT

      Longitudinal bars of beams, or slab, must be able to develop their yield stress, so that the beam/slab can transfer moment to joint. It means that longitudinal bars must have adequate development length for hooked bars. This implies that the size of the column must be such that bars can develop their tensile forces. If bars can transfer moment, they can also transfer shear as far as monolithic construction is concerned.


      The shear strength of the joint must enable the transfer of moment and shear through it.



      The joint should be Constructible: Congestion of reinforcement is the main concern.

      1.5.DESIGN SHEAR FOR BEAM COLUMN JOINT

      The design shear for beam-column joint depends upon the relative strength of beam and column at the joint.

       
      • 4 replies
    • *Comments/Observations regarding modelling in ETABS*

      *Doc No: 10-00-CD-0006*

      *Date: May 06, 2017*

      Some of the observations made during extraction of results from ETABS (v 9.7.4), for design of reinforced concrete members, are being share in this article.,

      1) Minimum Eccentricity

      ETABS always considers the minimum eccentricity for selecting the design moment of columns irrespective of the probable behavior of the column, whether short or long column. See section 10.10.6.5 and its commentary of ACI 318-08 which deals with minimum eccentricity of long columns. You should always check the design moments that ETABS uses for columns if you want to bring down the cost of construction.

      2) Unbraced/ Braced Preference

      ETABS always performs analysis of frame as if it is un-braced. You should investigate if the storey under consideration is braced, or un-braced (10.10.5.2), and decide appropriate design moments of columns.

      3) Time Period

      ETABS has a tendency to select a time period of the building that is considerably less than the value obtained by the approximate method, Method A, of the section 1630.2.2  of UBC 97. To quote the FEMA 451 document: ''Because this formula is based on lower bound regression analysis of measured building response in California, it will generally result in periods that are lower (hence, more conservative for use in predicting base shear) than those computed from a more rigorous mathematical model". So, there is no need to use the value of time period that is lot less than Ta. One should always check the time period used by the software; ETABS can overestimate the seismic force by more than 2 times.

      Visit the forum link to read the complete article.
      Link: http://www.sepakistan.com/topic/2300-commentsobservations-regarding-modelling-in-etabs/
      • 0 replies
    • The minimum amount and spacing of reinforcement to be used in structural floors, roof slabs, and walls for control of temperature and shrinkage cracking is given in ACI 318 or in ACI 350R. The minimum-reinforcement percentage, which is between 0.18 and 0.20%, does not normally control cracks to within generally acceptable design limits. To control cracks to a more acceptable level, the percentage requirement needs to exceed about 0.60% (REFRENCE ACI COMMITE REPORT 224R-01)



       

       



       

       

      So according to above statement , should we follow 0.60%, to be on more safe side??



       
      • 12 replies
    • Dear Sir/Madam,

      This email is an invitation for the participation in the First South Asia Conference on Earthquake Engineering (SACEE-2019) which will be held on 21-22 February 2019 in Karachi, Pakistan. This conference is the inaugural event in this series of conferences which has been constituted under the auspices of South Asia Earthquake Network (SHAKE). The organisers of the conference include NED University, University of Porto, University of Fuzhou, University Roma Tre and Institution of Engineers Pakistan. The conference website can be visited at http://sacee.neduet.edu.pk/.

      Please note that world leading earthquake engineering experts have confirmed their participation in the conference. These include Prof Abdelkrim Aoudia (Italy), Prof Alper Ilki (Turkey), Dr Amod Mani Dixit (Nepal), Prof Bruno Briseghella (Italy), Prof George Mylonakis (UK), Prof Khalid Mosalam (USA), Prof Humberto Varum (Portugal) and many others. The presence of these distinguished experts allows you to exchange your work/issues with them and discuss possibility of any future collaboration. Please note that participation in the conference is strictly based on registration. Early registration in different categories at reduced rates are available till 10 December 2018. Please visit the conference website to see the details and the link for registration.

      If there are any queries, please do not hesitate to contact the Conference Secretary at the following address

      Prof. Muhammad Masood Rafi
      Conference Secretary- SACEE-2019
      Chairman
      Department of Earthquake Engineering
      NED University of Engineering & Technology Karachi, Pakistan.
      Phone: 0092-21-992-261261 Ext:2605
      Email: rafi-m@neduet.edu.pk
    • What is the Minimum reinforcement For Precast Pile  according to different codes (ACI,BS)??  Pile length is 40 times of pile least dimension . 
      • 1 reply
    • Dear members, I am working on a 10 storied rcc factory building with one basement,  where floor loads are in general 125 psf(Live) . but there are 2 warehouse in the building at ground floor & 10th floor where the Live load of stacked materials are 450psf. I have modeled it and analysed in ETABS. After analysis, seeing the floor displacement for seismic load,  i am in big shock to see the pattern. the displacement pattern suddenly increased hugely & then got normal . if the warehouse load created problem, then why it effected only Ground floor level, not the 10th floor! Please tell me how can i solve it. 
      • 1 reply
    • Asalamualaikum all,

      I have columns which are conflicting with the underground water tank as shown in figure.
       

      So I have decided to make underground water tank base slab as a footing for column. So I import etabs model to safe and just take uniform water load on base slab and point load from columns.

      This is the residential house. The BC is 2tsf. But SAFE is showing tension on the base slab and the thickness from punching is 30''. I believe that thickness is too high. What can be the error? Is this approach is correct for design base slab of ugwt to carry load of two edge columns?
      • 11 replies
    • SAFE perform iterative uplift analysis,any one having experience how to check the results of this analysis???what is the purpose and scope of this analysis???
      • 15 replies
    • Shear wall design
      AOA 

      i am facing problems in shear wall design .what are the pier and spandral ?what will be the difference when we assign pier or spandral? without assigning these the shear wall design is incomplete .

      i am taking about etabsv16

      someone have document about shear wall design plz provide it 

      thank you

       
      • 13 replies
  • Tell a friend

    Love Structural Engineering Forum Of Pakistan? Tell a friend!
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use and Guidelines.